Properties

Label 960.599.240.c1.b1
Order $ 2^{2} $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(2\)
Generators: $a^{2}, b^{4}c^{15}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $(C_2\times C_4):C_{120}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{15}\times \OD_{16}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Automorphism Group: $C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(2048\)\(\medspace = 2^{11} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$(C_2\times C_4):C_{120}$
Normalizer:$(C_2\times C_4):C_{120}$
Minimal over-subgroups:$C_2\times C_{10}$$C_2\times C_6$$C_2^3$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$$C_2$
Autjugate subgroups:960.599.240.c1.a1

Other information

Möbius function$0$
Projective image$C_{15}\times \OD_{16}$