Properties

Label 960.540.80.e1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{6}c^{30}, c^{40}, a^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $(C_2\times C_{60}):C_8$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}.D_4$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2^4\times F_5$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2\times C_4\times C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_{60}$
Normalizer:$(C_2\times C_{60}):C_8$
Minimal over-subgroups:$C_{60}$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$
Maximal under-subgroups:$C_6$$C_4$
Autjugate subgroups:960.540.80.e1.b1

Other information

Möbius function$0$
Projective image$C_{30}.D_4$