Subgroup ($H$) information
Description: | $C_{60}.C_2^3$ |
Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Index: | \(2\) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Generators: |
$a, c^{40}, c^{30}, a^{2}, b, c^{12}, a^{4}$
|
Derived length: | $2$ |
The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_2\times C_{60}):C_8$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{15}:(C_2\times C_4\times C_2^6.C_2^3)$ |
$\operatorname{Aut}(H)$ | $(C_5\times C_2^3:A_4).C_6.C_2^4$ |
$\card{\operatorname{res}(S)}$ | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $D_{30}$ |