Properties

Label 960.540.2.b1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{60}.C_2^3$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a, c^{40}, c^{30}, a^{2}, b, c^{12}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_{60}):C_8$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2\times C_4\times C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $(C_5\times C_2^3:A_4).C_6.C_2^4$
$\card{\operatorname{res}(S)}$\(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$(C_2\times C_{60}):C_8$
Minimal over-subgroups:$(C_2\times C_{60}):C_8$
Maximal under-subgroups:$C_2^2\times C_{60}$$C_{30}:C_8$$C_{30}:C_8$$C_{30}:C_8$$C_{30}:C_8$$C_{20}.C_2^3$$C_{12}.C_2^3$
Autjugate subgroups:960.540.2.b1.b1

Other information

Möbius function$-1$
Projective image$D_{30}$