Subgroup ($H$) information
| Description: | $C_{10}$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$c^{15}, c^{6}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.
Ambient group ($G$) information
| Description: | $C_2\times C_{30}.D_8$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6.D_8$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Automorphism Group: | $C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Outer Automorphisms: | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^5.C_2^6.C_2^2)$ |
| $\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{W}$ | $1$ |
Related subgroups
Other information
| Möbius function | not computed |
| Projective image | not computed |