Properties

Label 960.4656.96.b1.a1
Order $ 2 \cdot 5 $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $c^{15}, c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_2\times C_{30}.D_8$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_6.D_8$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^5.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2\times C_{30}.D_8$
Normalizer:$C_2\times C_{30}.D_8$
Complements:$C_6.D_8$ $C_6.D_8$ $C_6.D_8$ $C_6.D_8$
Minimal over-subgroups:$C_{30}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:960.4656.96.b1.b1960.4656.96.b1.c1960.4656.96.b1.d1

Other information

Möbius function not computed
Projective image not computed