Properties

Label 960.4656.5.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6.D_8$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(5\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, b^{4}, b^{6}, b, c^{20}, c^{15}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_{30}.D_8$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^5.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_3:(C_2^4.C_2^6.C_2)$
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2\times C_{30}.D_8$
Complements:$C_5$
Minimal over-subgroups:$C_2\times C_{30}.D_8$
Maximal under-subgroups:$C_2\times C_4:C_{12}$$C_2^2.D_{12}$$C_{12}.C_2^3$$C_6.D_8$$C_6.D_8$$C_6.D_8$$C_6.D_8$$C_2^2.D_8$

Other information

Möbius function not computed
Projective image not computed