Properties

Label 960.4623.4.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{60}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $b^{2}, d^{6}, d^{3}, d^{4}, c^{5}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_2\times C_{60}):Q_8$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^9.C_2^5)$
$\operatorname{Aut}(H)$ $C_4\times C_2^4:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_{60}$
Normalizer:$(C_2\times C_{60}):Q_8$
Minimal over-subgroups:$C_2\times C_4\times C_{60}$$C_{60}.C_2^3$$C_2\times C_{12}:C_{20}$
Maximal under-subgroups:$C_2^2\times C_{30}$$C_2\times C_{60}$$C_2\times C_{60}$$C_2\times C_{60}$$C_2^2\times C_{20}$$C_2^2\times C_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed