Properties

Label 960.4620.30.c1.b1
Order $ 2^{5} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ab, c^{15}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{60}.\OD_{16}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2\times C_4\times C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_4^2.C_{20}$
Normal closure:$C_{12}:C_8$
Core:$C_4^2$
Minimal over-subgroups:$C_4:C_{40}$$C_{12}:C_8$$C_4^2.C_4$
Maximal under-subgroups:$C_4^2$$C_2\times C_8$$C_2\times C_8$
Autjugate subgroups:960.4620.30.c1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed