Properties

Label 960.4617.2.c1.d1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:C_{40}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $ac^{15}, b^{4}, c^{12}, b^{2}, b^{5}c^{25}, c^{40}, c^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times C_{12}:C_{40}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2\times C_4\times C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $C_3:(C_2^3.C_2^6)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_3 \rtimes (C_2^3 . C_2^6)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{20}$
Normalizer:$C_2\times C_{12}:C_{40}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_{12}:C_{40}$
Maximal under-subgroups:$C_4\times C_{60}$$C_6:C_{40}$$C_6:C_{40}$$C_4:C_{40}$$C_{12}:C_8$
Autjugate subgroups:960.4617.2.c1.a1960.4617.2.c1.b1960.4617.2.c1.c1

Other information

Möbius function$-1$
Projective image$C_2\times D_6$