Properties

Label 960.4617.10.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4\times C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{30}, b^{4}, b^{2}, c^{15}, c^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2\times C_{12}:C_{40}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2\times C_4\times C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_{60}$
Normalizer:$C_2\times C_{12}:C_{40}$
Minimal over-subgroups:$C_2\times C_4\times C_{60}$$C_4^2.D_6$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_4\times C_{12}$$C_4\times C_{12}$$C_4\times C_{12}$$C_4\times C_{12}$$C_2\times C_4^2$

Other information

Möbius function$1$
Projective image$S_3\times C_{10}$