Properties

Label 960.418.4.e1.b1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_{60}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $c^{3}, a^{4}, c^{4}, b^{2}, a^{2}b^{5}, c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):C_{40}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2\times C_4\times C_2^7.C_2^2)$
$\operatorname{Aut}(H)$ $C_2^6.D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4\times C_{60}$
Normalizer:$C_2\times C_4\times C_{60}$
Normal closure:$C_2\times C_4\times C_{60}$
Core:$C_2\times C_{60}$
Minimal over-subgroups:$C_2\times C_4\times C_{60}$
Maximal under-subgroups:$C_2\times C_{60}$$C_2\times C_{60}$$C_2\times C_{60}$$C_4\times C_{20}$$C_4\times C_{12}$
Autjugate subgroups:960.418.4.e1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_3:D_4$