Subgroup ($H$) information
Description: | $C_4\times C_{60}$ |
Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$c^{3}, a^{4}, c^{4}, b^{2}, a^{2}b^{5}, c^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $(C_2\times C_{12}):C_{40}$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_2\times C_4\times C_2^7.C_2^2)$ |
$\operatorname{Aut}(H)$ | $C_2^6.D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_3:D_4$ |