Properties

Label 960.4031.3.a1
Order $ 2^{6} \cdot 5 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_4):D_{20}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(3\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, d^{10}, d^{5}, b^{2}, b, d^{4}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):D_{20}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^9.C_2^5)$
$\operatorname{Aut}(H)$ $C_5:(C_2^9.C_2^4)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(40960\)\(\medspace = 2^{13} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$(C_2\times C_{12}):D_{20}$
Complements:$C_3$
Minimal over-subgroups:$(C_2\times C_{12}):D_{20}$
Maximal under-subgroups:$C_2^2.D_{20}$$C_2^2\times D_{20}$$C_2\times C_4\times C_{20}$$C_2^2.D_{20}$$C_2^3.C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_6\times D_{10}$