Subgroup ($H$) information
| Description: | $C_2^3$ | 
| Order: | \(8\)\(\medspace = 2^{3} \) | 
| Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Exponent: | \(2\) | 
| Generators: | $a, b^{4}, c^{30}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $C_{60}:\OD_{16}$ | 
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) | 
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{10}:C_{12}$ | 
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Automorphism Group: | $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \) | 
| Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5:(C_2\times C_4\times C_2^7.C_2^3)$ | 
| $\operatorname{Aut}(H)$ | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(5120\)\(\medspace = 2^{10} \cdot 5 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $C_{30}.C_2^3$ | 
