Properties

Label 960.3829.8.g1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:C_{12}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $b, c^{80}, b^{2}, c^{60}, c^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_3\times C_2^3.D_{20}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^5\times C_4\times C_2\times D_4)$
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{60}:D_4$
Normal closure:$C_{20}:C_{12}$
Core:$C_2\times C_{30}$
Minimal over-subgroups:$C_{20}:C_{12}$$C_{30}:D_4$$D_{10}:C_{12}$
Maximal under-subgroups:$C_2\times C_{30}$$C_5:C_{12}$$C_{10}:C_4$$C_2\times C_{12}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2\times D_{20}$