Properties

Label 960.295.10.c1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times \OD_{16}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ab, c^{6}, a^{2}c^{3}, b^{10}c^{3}, c^{9}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_4^2$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4:C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_4^2:C_{12}$
Normal closure:$C_{30}:\OD_{16}$
Core:$C_2^2\times C_{12}$
Minimal over-subgroups:$C_{30}:\OD_{16}$$C_4^2:C_{12}$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2\times C_{24}$$C_3\times \OD_{16}$$C_3\times \OD_{16}$$C_3\times \OD_{16}$$C_2\times \OD_{16}$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$D_{20}$