Properties

Label 960.2664.4.g1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}.D_4$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a, c^{20}, c^{6}, a^{2}, c^{15}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{12}.(C_4\times D_{10})$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:((C_2^8\times C_4).C_2^2)$
$\operatorname{Aut}(H)$ $C_4\times C_2^4:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$(C_2\times C_{12}):C_{20}$
Normal closure:$(C_2\times C_{12}):C_{20}$
Core:$C_2^2\times C_{30}$
Minimal over-subgroups:$(C_2\times C_{12}):C_{20}$
Maximal under-subgroups:$C_2^2\times C_{30}$$C_6:C_{20}$$C_6:C_{20}$$C_2^2:C_{20}$$C_6.D_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed