Subgroup ($H$) information
Description: | $C_{30}:C_8$ |
Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Generators: |
$b, c^{6}, b^{2}, b^{4}, c^{15}, c^{20}$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{12}.(C_4\times D_{10})$ |
Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{15}:((C_2^8\times C_4).C_2^2)$ |
$\operatorname{Aut}(H)$ | $D_4\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
$\card{W}$ | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
Möbius function | not computed |
Projective image | not computed |