Properties

Label 960.10981.6.k1.b1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ad, e^{4}, e^{5}, ce^{5}, b^{3}, e^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4\times D_{10}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_8:D_{10}$
Normal closure:$\GL(2,3):D_5$
Core:$Q_8\times D_5$
Minimal over-subgroups:$\GL(2,3):D_5$$D_8:D_{10}$
Maximal under-subgroups:$Q_8\times D_5$$D_4:D_5$$C_{40}:C_2$$C_5:\SD_{16}$$C_5\times \SD_{16}$$C_5:Q_{16}$$C_5:Q_{16}$$Q_{16}:C_2$
Autjugate subgroups:960.10981.6.k1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_{10}\times S_4$