Properties

Label 960.10981.6.d1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:\SD_{16}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a, e^{4}, de^{15}, ce^{15}, b^{3}e^{15}, e^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_5:(C_2^4.C_2^5)$
$\operatorname{res}(S)$$D_{10}.C_2^6$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4\times D_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_8:D_{10}$
Normal closure:$\GL(2,3):D_{10}$
Core:$C_{20}$
Minimal over-subgroups:$D_8:D_{10}$
Maximal under-subgroups:$D_4\times C_{10}$$C_{10}:Q_8$$C_{10}:C_8$$C_5:\SD_{16}$$C_5:\SD_{16}$$C_5:\SD_{16}$$C_5:\SD_{16}$$C_2\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$D_{10}\times S_4$