Properties

Label 960.10981.16.f1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ade^{15}, b^{2}c, e^{4}, b^{3}cde^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$S_3\times D_{10}$
Normal closure:$D_5\times \GL(2,3)$
Core:$C_5$
Minimal over-subgroups:$S_3\times D_{10}$
Maximal under-subgroups:$C_3\times D_5$$C_5\times S_3$$D_{15}$$D_{10}$$D_6$
Autjugate subgroups:960.10981.16.f1.a2960.10981.16.f1.b1960.10981.16.f1.b2

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$\GL(2,3):D_{10}$