Properties

Label 960.10975.24.bb1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{40}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ae^{15}, ce^{15}, e^{10}, e^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times F_5\times S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{40}$
Normalizer:$D_8:D_{10}$
Normal closure:$C_5\times \GL(2,3)$
Core:$C_{10}$
Minimal over-subgroups:$C_2\times C_{40}$$C_5\times \SD_{16}$$C_{40}:C_2$$C_5\times \SD_{16}$$C_{40}:C_2$$D_{40}$$C_5:Q_{16}$
Maximal under-subgroups:$C_{20}$$C_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$D_{10}\times S_4$