Properties

Label 960.10969.20.e1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3)$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $abde^{15}, e^{10}, b^{2}ce^{10}, c, e^{15}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$\GL(2,3):C_2^2$
Normal closure:$C_5:\GL(2,3)$
Core:$\SL(2,3)$
Minimal over-subgroups:$C_5:\GL(2,3)$$\GL(2,3):C_2$$\GL(2,3):C_2$$\GL(2,3):C_2$
Maximal under-subgroups:$\SL(2,3)$$\SD_{16}$$D_6$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-2$
Projective image$D_{10}\times S_4$