Properties

Label 960.10966.60.v1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, e^{5}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times F_5\times S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_5:D_4$
Normalizer:$D_{40}:C_2^2$
Normal closure:$\GL(2,3)$
Core:$Q_8$
Minimal over-subgroups:$C_5\times \SD_{16}$$\GL(2,3)$$C_2\times \SD_{16}$$C_2\times \SD_{16}$$D_8:C_2$
Maximal under-subgroups:$Q_8$$D_4$$C_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$10$
Projective image$D_{10}\times S_4$