Properties

Label 960.10958.96.b1.b1
Order $ 2 \cdot 5 $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $c^{3}e^{10}, e^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $\GL(2,3):C_2$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_{10}\times \GL(2,3)$
Normalizer:$\GL(2,3):D_{10}$
Complements:$\GL(2,3):C_2$ $\GL(2,3):C_2$ $\GL(2,3):C_2$ $\GL(2,3):C_2$
Minimal over-subgroups:$C_{30}$$C_2\times C_{10}$$C_2\times C_{10}$$D_{10}$$D_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:960.10958.96.b1.a1

Other information

Möbius function not computed
Projective image not computed