Properties

Label 960.10958.24.b1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times Q_8$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $d, e^{4}, e^{10}, e^{15}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$\GL(2,3):D_{10}$
Minimal over-subgroups:$C_5\times \SL(2,3)$$Q_8\times C_{10}$$D_{20}:C_2$$D_{20}:C_2$$C_5\times \SD_{16}$$C_5\times \SD_{16}$$Q_8:D_5$$Q_8:D_5$
Maximal under-subgroups:$C_{20}$$Q_8$

Other information

Möbius function not computed
Projective image not computed