Properties

Label 960.10958.12.e1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, de^{5}, e^{4}, c^{3}, e^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^4.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{40}:C_2^3$
Normal closure:$C_{10}\times \GL(2,3)$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$D_4\times D_{10}$$C_{10}:D_8$$C_{10}\times \SD_{16}$
Maximal under-subgroups:$C_2^2\times C_{10}$$C_2\times C_{20}$$C_5\times D_4$$C_5\times D_4$$C_5\times D_4$$C_2\times D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed