Properties

Label 960.10807.5.a1
Order $ 2^{6} \cdot 3 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:Q_8\times C_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{2}d^{30}, d^{40}, b, d^{30}, c, d^{15}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^2:Q_8\times C_{30}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^7.C_2^6$, of order \(8192\)\(\medspace = 2^{13} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^7.C_2^6$, of order \(8192\)\(\medspace = 2^{13} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{30}$
Normalizer:$C_2^2:Q_8\times C_{30}$
Complements:$C_5$
Minimal over-subgroups:$C_2^2:Q_8\times C_{30}$
Maximal under-subgroups:$C_2^3\times C_{12}$$C_2^3:C_{12}$$C_2\times C_4:C_{12}$$C_6.C_2^4$$C_2\times C_4:C_{12}$$C_{12}.D_4$$C_2^3:Q_8$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^2\times C_{10}$