Subgroup ($H$) information
| Description: | $C_{12}:C_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$ab, c^{4}, d^{5}, c^{6}d^{10}, d^{10}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_5\times D_{12}:D_4$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times C_{10}$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(12288\)\(\medspace = 2^{12} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(128\)\(\medspace = 2^{7} \) |
| $W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $-2$ |
| Projective image | $C_{15}:C_2^4$ |