Properties

Label 960.10192.2.a1.b1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_6:D_4$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a, d^{10}, c^{3}d^{5}, d^{4}, b, c^{4}, c^{6}d^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_5\times D_{12}:D_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_3:(C_2^8.C_2^2)$
$\operatorname{res}(S)$$C_3 \rtimes (C_{2}^{7} \times C_{4})$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_5\times D_{12}:D_4$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_5\times D_{12}:D_4$
Maximal under-subgroups:$D_4\times C_{30}$$C_{30}:D_4$$C_{30}:D_4$$C_{15}:C_2^4$$C_{30}.D_4$$D_6:C_{20}$$D_6:C_{20}$$C_2^4:C_{10}$$D_6:D_4$
Autjugate subgroups:960.10192.2.a1.a1

Other information

Möbius function$-1$
Projective image$C_2^2\times D_6$