Properties

Label 960.10192.12.s1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $abcd^{10}, d^{5}, d^{4}, c^{6}d^{10}, d^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_5\times D_{12}:D_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^4.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^3.C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2:C_{20}$
Normalizer:$C_5\times D_4:D_4$
Normal closure:$C_{10}\times D_{12}$
Core:$C_2\times C_{20}$
Minimal over-subgroups:$C_{10}\times D_{12}$$C_{10}.C_2^4$$C_{20}:C_2^3$$D_4\times C_{20}$
Maximal under-subgroups:$C_2\times C_{20}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_5\times D_4$$C_5\times D_4$$C_5\times D_4$$C_5\times D_4$$C_2\times D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-2$
Projective image$C_2^2\times D_6$