Properties

Label 96.226.2.b1
Order $ 2^{4} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times A_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(2\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 5 & 4 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 0 & 3 \\ 5 & 7 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 4 & 5 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times S_4$
Complements:$C_2$
Minimal over-subgroups:$C_2^2\times S_4$
Maximal under-subgroups:$C_2\times A_4$$C_2^4$$C_2\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$S_4$