Subgroup ($H$) information
Description: | $C_3:C_4$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$cd^{5}, c^{2}, d^{2}$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_2^3:D_6$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^3$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(2\) |
Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Centralizer: | $C_2^3$ | |
Normalizer: | $C_2^3:D_6$ | |
Complements: | $C_2^3$ $C_2^3$ | |
Minimal over-subgroups: | $C_6:C_4$ | $C_3:D_4$ |
Maximal under-subgroups: | $C_6$ | $C_4$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $-8$ |
Projective image | $C_2^2\times D_6$ |