Subgroup ($H$) information
| Description: | $C_6$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Index: | \(16\)\(\medspace = 2^{4} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $c^{4}, b^{2}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $D_8:S_3$ | 
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times D_4$ | 
| Order: | \(16\)\(\medspace = 2^{4} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Automorphism Group: | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) | 
| Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{24}:C_2^4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) | 
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_3\times D_8$ | ||||||
| Normalizer: | $D_8:S_3$ | ||||||
| Minimal over-subgroups: | $D_6$ | $C_{12}$ | $C_3:C_4$ | $C_2\times C_6$ | $C_2\times C_6$ | $C_3:C_4$ | $C_3:C_4$ | 
| Maximal under-subgroups: | $C_3$ | $C_2$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $S_3\times D_4$ | 
