Properties

Label 952.22.28.b1.b1
Order $ 2 \cdot 17 $
Index $ 2^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a^{2}b^{119}, b^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{14}:C_{68}$
Order: \(952\)\(\medspace = 2^{3} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_7:C_4$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Automorphism Group: $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.C_{48}.C_2^3$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{14}:C_{68}$
Normalizer:$C_{14}:C_{68}$
Complements:$C_7:C_4$ $C_7:C_4$
Minimal over-subgroups:$C_{238}$$C_2\times C_{34}$
Maximal under-subgroups:$C_{17}$$C_2$
Autjugate subgroups:952.22.28.b1.a1

Other information

Möbius function$0$
Projective image$C_7:C_4$