Properties

Label 952.1.476.a1.a1
Order $ 2 $
Index $ 2^{2} \cdot 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(2\)
Generators: $a^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_7:C_{136}$
Order: \(952\)\(\medspace = 2^{3} \cdot 7 \cdot 17 \)
Exponent: \(952\)\(\medspace = 2^{3} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_7:C_{68}$
Order: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Automorphism Group: $D_{14}:C_{48}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{16}\times F_7$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_7:C_{136}$
Normalizer:$C_7:C_{136}$
Minimal over-subgroups:$C_{34}$$C_{14}$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_7:C_{68}$