Properties

Label 94248.b.5236.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{2} \cdot 7 \cdot 11 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{47124}, a^{73304}, a^{31416}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{94248}$
Order: \(94248\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(94248\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7,11,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{5236}$
Order: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Automorphism Group: $C_2^3\times C_{240}$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2^3\times C_{240}$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,11,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4\times C_6\times C_{240}$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{94248}$
Normalizer:$C_{94248}$
Minimal over-subgroups:$C_{306}$$C_{198}$$C_{126}$$C_{36}$
Maximal under-subgroups:$C_9$$C_6$

Other information

Möbius function$0$
Projective image$C_{5236}$