Properties

Label 93312.iq.24._.FI
Order $ 2^{4} \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.(C_6\times S_4)$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ab^{3}d^{11}e^{7}f^{2}g^{2}, e^{6}, c^{2}de^{3}f^{2}g, d^{4}f, b^{3}c^{3}f^{2}g, b^{2}e^{8}g^{2}, d^{6}e^{6}, e^{4}g, fg^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2.S_3^3:D_6$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_4^2.D_6^2$
$\operatorname{Aut}(H)$ $C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$24$
Möbius function not computed
Projective image not computed