Subgroup ($H$) information
Description: | $C_3^3.(C_6\times S_4)$ |
Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$ab^{3}d^{11}e^{7}f^{2}g^{2}, e^{6}, c^{2}de^{3}f^{2}g, d^{4}f, b^{3}c^{3}f^{2}g, b^{2}e^{8}g^{2}, d^{6}e^{6}, e^{4}g, fg^{2}$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^2.S_3^3:D_6$ |
Order: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.C_4^2.D_6^2$ |
$\operatorname{Aut}(H)$ | $C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $24$ |
Möbius function | not computed |
Projective image | not computed |