Properties

Label 93312.dy.8.A
Order $ 2^{4} \cdot 3^{6} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: not computed
Generators: $b^{2}c^{3}de^{3}fg, e^{3}f^{3}, c^{2}d^{4}e^{5}, f^{2}, f^{3}, d^{2}f^{3}g^{2}, c^{4}d^{2}e^{4}fg, d^{3}, c^{3}, e^{2}g$ Copy content Toggle raw display
Derived length: not computed

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, and metabelian (hence solvable). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_3^{12}.C_2^6.D_6.(C_2\times D_4)$, of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2^5:(\He_3^2:C_4)$
Complements:$C_2\times C_4$ $C_2\times C_4$
Minimal over-subgroups:$C_2\times (C_6^2\times A_4).C_3^3$$C_2^4.C_3^4:C_3.S_3$$C_2^4.C_3^4:C_3.S_3$
Maximal under-subgroups:$C_2^4.C_3^4:C_3$$C_3\times (C_3\times A_4):A_4.C_3$$C_6^2\times C_6^2:C_3$$C_2^4.C_3^4:C_3$$C_2^4.C_3^4:C_3$$C_2^4.C_3^4:C_3$$C_6^2.C_3^4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed