Properties

Label 93312.dy.324.A
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_6^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}, c^{2}d^{4}e^{5}, f^{3}, c^{3}d^{3}, f^{2}, d^{3}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^4:C_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $\AGammaL(2,9)$, of order \(933120\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \)
Outer Automorphisms: $A_6.D_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $\GL(5,2)\times \GL(2,3)$
$W$$C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6^4$
Normalizer:$C_2^5:(\He_3^2:C_4)$
Minimal over-subgroups:$C_2^2\times C_6^3$$C_2^2\times C_6^3$$C_2^2:C_6^3$$C_2^2:C_6^3$$C_2^5:C_3^3$$C_2^5:C_3^3$$C_2^4:C_6^2$
Maximal under-subgroups:$C_2^2\times C_6^2$$C_2^4\times C_6$$C_2^4\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed