Properties

Label 93312.dy.2916.A
Order $ 2^{5} $
Index $ 2^{2} \cdot 3^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(2\)
Generators: $b^{3}, c^{3}d^{3}, d^{3}, f^{3}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $\He_3^2:C_4$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^3:\SOPlus(4,2).S_4$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $\GL(5,2)$, of order \(9999360\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$W$$C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6^4$
Normalizer:$C_2^5:(\He_3^2:C_4)$
Complements:$\He_3^2:C_4$
Minimal over-subgroups:$C_2^4\times C_6$$C_2^4\times C_6$
Maximal under-subgroups:$C_2^4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed