Properties

Label 93312.dd.18.CL
Order $ 2^{6} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}c^{3}, f^{3}g, d^{2}f^{2}, d^{2}e^{2}f^{4}, g, b^{3}, c^{2}d^{4}ef^{3}g, e^{3}f^{3}, d^{3}f^{3}, a^{2}d^{3}g$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_6^4.S_3^2$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^6$
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$(S_3\times C_6^2):S_4$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$(D_6\times C_6^2):S_4$
Normal closure:$C_6^4.S_3^2$
Core:$C_2\times C_6^3$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2\times C_6^4.S_3^2$