Properties

Label 92880.b.1720.a1.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{3} \cdot 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{54}$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Exponent: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Generators: $a^{46440}, a^{37840}, a^{20640}, a^{61920}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{92880}$
Order: \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Exponent: \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{1720}$
Order: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Exponent: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Automorphism Group: $C_2^3\times C_{84}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2^3\times C_{84}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_{12}\times C_{252}$
$\operatorname{Aut}(H)$ $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{92880}$
Normalizer:$C_{92880}$
Minimal over-subgroups:$C_{2322}$$C_{270}$$C_{108}$
Maximal under-subgroups:$C_{27}$$C_{18}$

Other information

Möbius function$0$
Projective image$C_{1720}$