Properties

Label 928.31.32.a1.a1
Order $ 29 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{29}$
Order: \(29\)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(29\)
Generators: $c^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $29$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_4.D_{116}$
Order: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Exponent: \(232\)\(\medspace = 2^{3} \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4.D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{58}.C_{14}.C_4.C_2^4$
$\operatorname{Aut}(H)$ $C_{28}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{28}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1856\)\(\medspace = 2^{6} \cdot 29 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\OD_{16}\times C_{29}$
Normalizer:$C_4.D_{116}$
Minimal over-subgroups:$C_{58}$$C_{58}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_4.D_{116}$