Properties

Label 9264.g.12.c1.a1
Order $ 2^{2} \cdot 193 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_4$
Order: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Generators: $a^{2}, b^{1158}, b^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{193}:C_{24}$
Order: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_4$, of order \(772\)\(\medspace = 2^{2} \cdot 193 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_{193}:C_{24}$
Minimal over-subgroups:$C_{193}:C_{12}$$C_4\times D_{193}$$C_{193}:C_8$$C_{193}:C_8$
Maximal under-subgroups:$C_{386}$$C_4$

Other information

Möbius function$-2$
Projective image$(C_5^3\times C_{10}).\SD_{16}$