Subgroup ($H$) information
Description: | $C_{193}:C_4$ |
Order: | \(772\)\(\medspace = 2^{2} \cdot 193 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(772\)\(\medspace = 2^{2} \cdot 193 \) |
Generators: |
$a^{2}, b^{1158}, b^{12}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{193}:C_{24}$ |
Order: | \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \) |
Exponent: | \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2\times C_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{386}.C_{96}.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
$W$ | $C_{193}:C_4$, of order \(772\)\(\medspace = 2^{2} \cdot 193 \) |
Related subgroups
Centralizer: | $C_{12}$ | |||
Normalizer: | $D_{193}:C_{24}$ | |||
Minimal over-subgroups: | $C_{193}:C_{12}$ | $C_4\times D_{193}$ | $C_{193}:C_8$ | $C_{193}:C_8$ |
Maximal under-subgroups: | $C_{386}$ | $C_4$ |
Other information
Möbius function | $-2$ |
Projective image | $(C_5^3\times C_{10}).\SD_{16}$ |