Properties

Label 9245.a.215.a1.t1
Order $ 43 $
Index $ 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{43}$
Order: \(43\)
Index: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(43\)
Generators: $ab^{70}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{43}\times C_{215}$
Order: \(9245\)\(\medspace = 5 \cdot 43^{2} \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 43$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{215}$
Order: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Automorphism Group: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times C_{42}.\PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{43}\times C_{215}$
Normalizer:$C_{43}\times C_{215}$
Complements:$C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$
Minimal over-subgroups:$C_{43}^2$$C_{215}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:9245.a.215.a1.a19245.a.215.a1.b19245.a.215.a1.c19245.a.215.a1.d19245.a.215.a1.e19245.a.215.a1.f19245.a.215.a1.g19245.a.215.a1.h19245.a.215.a1.i19245.a.215.a1.j19245.a.215.a1.k19245.a.215.a1.l19245.a.215.a1.m19245.a.215.a1.n19245.a.215.a1.o19245.a.215.a1.p19245.a.215.a1.q19245.a.215.a1.r19245.a.215.a1.s19245.a.215.a1.u19245.a.215.a1.v19245.a.215.a1.w19245.a.215.a1.x19245.a.215.a1.y19245.a.215.a1.z19245.a.215.a1.ba19245.a.215.a1.bb19245.a.215.a1.bc19245.a.215.a1.bd19245.a.215.a1.be19245.a.215.a1.bf19245.a.215.a1.bg19245.a.215.a1.bh19245.a.215.a1.bi19245.a.215.a1.bj19245.a.215.a1.bk19245.a.215.a1.bl19245.a.215.a1.bm19245.a.215.a1.bn19245.a.215.a1.bo19245.a.215.a1.bp19245.a.215.a1.bq19245.a.215.a1.br1

Other information

Möbius function$1$
Projective image$C_{215}$