Properties

Label 9240.a.14.b1.b1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{30}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $ab^{1309}, b^{420}, b^{1540}, b^{2310}, b^{2772}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\times D_{420}$
Order: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4^2$, of order \(403200\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_{10}\times S_3\times F_5$
$W$$D_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{60}$
Normal closure:$C_{22}\times D_{105}$
Core:$C_{330}$
Minimal over-subgroups:$C_{22}\times D_{105}$$C_{11}\times D_{60}$
Maximal under-subgroups:$C_{330}$$C_{11}\times D_{15}$$C_{11}\times D_{10}$$S_3\times C_{22}$$D_{30}$
Autjugate subgroups:9240.a.14.b1.a1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$D_{210}$