Properties

Label 924.13.21.a1.a1
Order $ 2^{2} \cdot 11 $
Index $ 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a, c^{7}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{11}\times F_7$
Order: \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Exponent: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times F_{11}$, of order \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_{22}$
Normal closure:$D_7\times D_{11}$
Core:$D_{11}$
Minimal over-subgroups:$D_7\times D_{11}$$C_3\times D_{22}$
Maximal under-subgroups:$D_{11}$$C_{22}$$D_{11}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$D_{11}\times F_7$