Subgroup ($H$) information
Description: | $C_3\times D_{11}$ |
Order: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
Index: | \(14\)\(\medspace = 2 \cdot 7 \) |
Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
Generators: |
$ab^{3}, c^{7}, b^{2}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{11}\times F_7$ |
Order: | \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \) |
Exponent: | \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_7\times F_{11}$, of order \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
$\operatorname{res}(S)$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \) |
Related subgroups
Centralizer: | $C_6$ | ||
Normalizer: | $C_3\times D_{22}$ | ||
Normal closure: | $C_{77}:C_6$ | ||
Core: | $C_{11}$ | ||
Minimal over-subgroups: | $C_{77}:C_6$ | $C_3\times D_{22}$ | |
Maximal under-subgroups: | $C_{33}$ | $D_{11}$ | $C_6$ |
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $1$ |
Projective image | $D_{11}\times F_7$ |