Properties

Label 921984.a.9408.ek1
Order $ 2 \cdot 7^{2} $
Index $ 2^{6} \cdot 3 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:D_7$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(9408\)\(\medspace = 2^{6} \cdot 3 \cdot 7^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(1,2,3,4,5,6,7)(22,27,25,23,28,26,24), (8,10,12,14,9,11,13)(15,17,19,21,16,18,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$W$$D_7^2$, of order \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_7\times D_{14}$
Normal closure:$C_7^4:C_2$
Core:$C_1$
Minimal over-subgroups:$C_7^3:C_2$$C_7^3:C_2$$C_7^3:C_2$$C_7^3:C_2$$C_7^3:C_2$$C_7:D_{14}$$D_7^2$$D_7^2$
Maximal under-subgroups:$C_7^2$$D_7$$D_7$$D_7$$D_7$$D_7$

Other information

Number of subgroups in this autjugacy class$2352$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$