Properties

Label 921984.a.9408.cu1
Order $ 2 \cdot 7^{2} $
Index $ 2^{6} \cdot 3 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times D_7$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(9408\)\(\medspace = 2^{6} \cdot 3 \cdot 7^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(8,10,12,14,9,11,13), (8,11)(9,10)(12,14)(15,26)(16,27)(17,28)(18,22)(19,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $C_6\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_7\times C_{14}$
Normalizer:$C_{14}:D_7^2$
Normal closure:$C_7^4:Q_8:S_4$
Core:$C_1$
Minimal over-subgroups:$D_7\times C_7^2$$C_7^2:C_{14}$$C_7\times D_{14}$$D_7^2$$D_7^2$
Maximal under-subgroups:$C_7^2$$C_{14}$$D_7$

Other information

Number of subgroups in this autjugacy class$336$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$