Properties

Label 921984.a.9408.b1
Order $ 2 \cdot 7^{2} $
Index $ 2^{6} \cdot 3 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{14}$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(9408\)\(\medspace = 2^{6} \cdot 3 \cdot 7^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(15,17,19,21,16,18,20)(22,23,24,25,26,27,28), (9,14)(10,13)(11,12), (1,2,3,4,5,6,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_7^2\times C_{14}$
Normalizer:$C_{14}:D_7^2$
Normal closure:$C_7^3:C_2^3\times D_7$
Core:$C_1$
Minimal over-subgroups:$C_7^2\times C_{14}$$D_7\times C_7^2$$C_7\times D_{14}$$C_7:D_{14}$$C_7\times D_{14}$
Maximal under-subgroups:$C_7^2$$C_{14}$$C_{14}$$C_{14}$$C_{14}$$C_{14}$

Other information

Number of subgroups in this autjugacy class$336$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$